Vol. 6 Issue 7, November 2017,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed

at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell's Directories of Publishing Opportunities, U.S.A

RING-THEORETIC STRUCTURES WHICH DO NOT INCLUDE "CLOSEDNESS"
CONSTRAINTS

PRAVIN KUMAR SINGH

Research scholar

Department of Mathematics

LNMU Darbhanga Bihar

Abstract. In this paper, we analyze the ring $\nabla[\mathcal{L}^4, \mathcal{L}^5] = \nabla + \mathcal{L}^4 \nabla[\mathcal{L}]$ and establish some parallel results to the polynomial ring $\nabla[\mathcal{L}]$. Our main objective is to identify that $\nabla[\mathcal{L}^4, \mathcal{L}^5]$ is a UMT domain except if ∇ is a UMT domain.

Keywords. Eulerian property, integral domain, ideal, UMT domain.

1. Introduction

Consider ∇ as an integral domain, let \mathcal{L} be an indeterminate domain over ∇ , and let $\nabla[\mathcal{L}]$ be a polynomial ring over ∇ . A nonzero prime ideal ∇' of $\nabla[\mathcal{L}]$ is referred to as upper to zero in $\nabla[\mathcal{L}]$ if ∇' of $\nabla=(0)$ is defined. We state that ∇ is a UMT-domain if each upper to zero in $\nabla[\mathcal{L}]$ is the maximum t-ideal of $\nabla[\mathcal{L}]$. Houston and Zafrullah presented the notion of UMT-domains in 1989.

Throughout the whole manuscript, ∇ represents an integral domain with quotient field ∇ '. For $\varphi \in \nabla$ "[\mathcal{L}], also considering \mathcal{A}_{φ} is the fractional ideal of ∇ which is generated by the coefficients of φ . The idea of multiplicative ideal theory is better explained by Gilmer [2] whereas the commutative ring theory is discussed in detail by Kaplansky [8]. The important Lemmas to support our focal results are proved to make the manuscript self-contained and are as follows:

615

International Journal of Engineering, Science and Mathematics http://www.ijesm.co.in, Email: ijesmj@gmail.com

Vol. 6 Issue 7, November 2017,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Lemma 2.1 Let | be a nonzero fractional ideal of ∇ . Then

(a)
$$([\nabla[\mathcal{L}^4, \mathcal{L}^5])^{-1} = ([)^{-1}\nabla[\mathcal{L}^4, \mathcal{L}^5].$$

(b)
$$([\nabla[\mathcal{L}^4, \mathcal{L}^5])_{\vartheta} = ([)_{\vartheta} \nabla[\mathcal{L}^4, \mathcal{L}^5].$$

(c)
$$([\nabla[\mathcal{L}^4, \mathcal{L}^5])_{\tau} = ([)_{\tau} \nabla[\mathcal{L}^4, \mathcal{L}^5].$$

Proof. (a) It is obvious that $(\lfloor 1)^{-1}\nabla[\mathcal{L}^4,\mathcal{L}^5]$ is an subset of $(\lfloor \nabla[\mathcal{L}^4,\mathcal{L}^5])^{-1}$. It is important to note that $\lfloor (\lfloor \nabla[\mathcal{L}^4,\mathcal{L}^5])^{-1}$ is subset of $\nabla[\mathcal{L}^4,\mathcal{L}^5]$ is subset of $\nabla[\mathcal{L}^4,\mathcal{L}^5]$, it results $(\lfloor \nabla[\mathcal{L}^4,\mathcal{L}^5])^{-1}$ is subset of $\nabla[\mathcal{L}^4,\mathcal{L}^5]$.

If φ belongs to $(\lfloor \nabla [\mathcal{L}^4, \mathcal{L}^5])^{-1}$, then $\mathcal{A}_{\varphi} \rfloor$ is a subset of ∇ . And hence we have, $\varphi \in \mathcal{A} \varphi \nabla \mathcal{L} 4, \mathcal{L} 5$ is a subset of $(\lfloor \mathcal{L}^4, \mathcal{L} 5 \mathcal{L} 5)$. Results,

(b)Using (a),

$$=(1)_{\mathfrak{I}}\nabla[\mathcal{L}^4,\mathcal{L}^5].$$

(c) it is obvious that if $(\varphi)_1$, $(\varphi)_2$, $(\varphi)_3$, $(\varphi)_4$ $(\varphi)_k \in \mathcal{V}[\mathcal{L}^4, \mathcal{L}^5]$ and hence we have

$$((\varphi)_{1}, (\varphi)_{2}, (\varphi)_{3}, (\varphi)_{4} \dots (\varphi)_{k})$$

$$\subseteq \qquad \qquad ((\mathcal{A}(\varphi)_{1}, \mathcal{A}(\varphi)_{2}, \mathcal{A}(\varphi)_{3}, \mathcal{A}(\varphi)_{4} \dots \mathcal{A}(\varphi)_{k}) \nabla [\mathcal{L}^{4}, \mathcal{L}^{5}])_{\vartheta}$$

$$= ((\mathcal{A}(\varphi)_{1}, \mathcal{A}(\varphi)_{2}, \mathcal{A}(\varphi)_{3}, \mathcal{A}(\varphi)_{4} \dots \mathcal{A}(\varphi)_{k}))_{\vartheta} \nabla [\mathcal{L}^{4}, \mathcal{L}^{5}]$$

$$\subseteq (1)_{\tau} \nabla [\mathcal{L}^{4}, \mathcal{L}^{5}]$$

and hence

 $([\nabla[\mathcal{L}^4,\mathcal{L}^5])_{\tau}$ is a subset of $([\cdot]_{\tau}\nabla[\mathcal{L}^4,\mathcal{L}^5]]$. Contrarily, let nonempty Γ be a finitely generated subideal of $[\cdot]$. Then $(\Gamma)_{\vartheta}\nabla[\mathcal{L}^4,\mathcal{L}^5] = (\Gamma\nabla[\mathcal{L}^4,\mathcal{L}^5])_{\vartheta}$ is a subset of $([\nabla[\mathcal{L}^4,\mathcal{L}^5])_{\tau})_{\tau}$ by (b). Which results $([\cdot]_{\tau}\nabla[\mathcal{L}^4,\mathcal{L}^5])_{\tau}$ is a subset of $(\Gamma\nabla[\mathcal{L}^4,\mathcal{L}^5])_{\tau} = (\Gamma)_{\tau}\nabla[\mathcal{L}^4,\mathcal{L}^5]$.

LEMMA 2. Let ∇' be a maximal t - ideal of $\nabla[\mathcal{L}^4, \mathcal{L}^5]$ such that $\nabla' \cap \nabla$ is nonempty. Then $\nabla' = (\nabla' \cap \nabla)[\mathcal{L}^4, \mathcal{L}^5]$. Particularly, $\nabla' \cap \nabla$ is a maximal t - ideal of ∇ .

Vol. 6 Issue 7, November 2017,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Proof. It is sufficient to prove that

 $c(\nabla')[\mathcal{L}^4, \mathcal{L}^5]$ is a subset of $\nabla'.\nabla'$ generated an ideal $c(\nabla')$ with the help of coefficients of all the polynomials in ∇' . If $c(\nabla')$ is not a subset of ∇' , which gives ∇' is a subset of $c(\nabla')[\mathcal{L}^4, \mathcal{L}^5]$.

For ∇' Being a maximal t - ideal, we have

$$(c(\nabla'))_{\tau} [\mathcal{L}^4, \mathcal{L}^5] = (c(\nabla')[\mathcal{L}^4, \mathcal{L}^5])_{\tau}$$
$$= \nabla[\mathcal{L}^4, \mathcal{L}^5].$$

It results,

$$\left(c(\nabla')\right)_{\tau} = \nabla;$$

Whenever there is an existence of a polynomial φ belongs to ∇' in such a way that $(\mathcal{A}_{\varphi})_{\vartheta} = \nabla$.

Consider a nonempty α is an element of $\nabla' \cap \nabla$.

Claiming the condition $(\alpha, \varphi)^{-1} = \nabla[\mathcal{L}^4, \mathcal{L}^5]$. Since γ is an arbitrarily chosen of $(\alpha, \varphi)^{-1}$ and $\alpha\gamma \in \nabla'[\mathcal{L}^4, \mathcal{L}^5]$, it is to be noted that $(\alpha, \varphi)^{-1}$ is a subset of $\nabla'[\mathcal{L}^4, \mathcal{L}^5]$. Also, if $\in (\alpha, \varphi)^{-1}$, there is an existence of an integer $\mu \geq 1$ in such a way $\mathcal{A}_{\varphi}^{\mu+1}\mathcal{A}_{\varphi\gamma}$ [2]. And hence $(\mathcal{A}_{\varphi}^{\mu}\mathcal{A}_{\varphi\gamma})_{\vartheta} = ((\mathcal{A}_{\varphi}^{\mu})_{\vartheta}\mathcal{A}_{\varphi\gamma})_{\vartheta} = (\mathcal{A}_{\varphi\gamma})_{\vartheta}$ is a subset of ∇' . Results,

 $\gamma \in \mathcal{A}_{\varphi}[\mathcal{L}^4, \mathcal{L}^5]$ is a subset of $\nabla[\mathcal{L}^4, \mathcal{L}^5]$,

Hence,

 $(\alpha, \varphi)^{-1} = \nabla[\mathcal{L}^4, \mathcal{L}^5]$, which gives $(\alpha, \varphi)_{\vartheta} = \nabla[\mathcal{L}^4, \mathcal{L}^5]$, which is a contradictory statement because ∇' is a t-ideal. Now, we have

$$c(\nabla')[\mathcal{L}^4, \mathcal{L}^5] = \nabla'$$

And hence finally we have

$$\nabla' = (\nabla \cap \nabla')[\mathcal{L}^4, \mathcal{L}^5].$$

As in [1], ∇ is referred to as the UMT-domain if it is any upper to zero (nonzero

Vol. 6 Issue 7, November 2017,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell's Directories of Publishing Opportunities, U.S.A

prime). The ideal of $\nabla[\mathcal{L}]$ which contracting to zero in is the maximum t-ideal. Recollect that $\nabla[\mathcal{L}]$ is a UMT-domain if and only if ∇ is a UMT-domain [6, Theorem 3.4]. As just a consequence of our next result, $(\nabla)[\mathcal{L}^4,\mathcal{L}^5]$ is a UMT-domain if and only If $\nabla[\mathcal{L}]$ is a UMT domain.

Theorem. $(\nabla)[\mathcal{L}^4, \mathcal{L}^5]$ is a UMT iff ∇ is a UMT-domain.

Proof. Considering $(\nabla)[\mathcal{L}^4, \mathcal{L}^5]$ as a UMT-domain. Assuming a maximal $t - ideal\beta$ of ∇ . Then by using Lemma [2], a maximal t - ideal $(\beta \nabla)[\mathcal{L}^4, \mathcal{L}^5]$ of $(\nabla)[\mathcal{L}^4, \mathcal{L}^5]$. Also, it is to be noted that $(\nabla)[\mathcal{L}^4, \mathcal{L}^5]_{\beta\theta}(\nabla)[\mathcal{L}^4, \mathcal{L}^5] = (\nabla)[\mathcal{L}]_{\beta[\mathcal{L}]}$. It is given that, $(\nabla)[\mathcal{L}^4, \mathcal{L}^5]$ is a UMT-domain, $\nabla[\mathcal{L}]_{\beta[\mathcal{L}]}$ is a t-linkative UMT-domain [6], which gives ∇_{β} is a t-linkative UMT-domain. Which results that ∇ is a UMT-domain.

Converse,

Considering a UMT-domain ∇ . It is to prove that $\nabla[\mathcal{L}^4, \mathcal{L}^5]$ is a UMT-domain. Now it will be more than sufficient to show that ∇' is a maximal ideal of $\nabla[\mathcal{L}^4, \mathcal{L}^5]$, then there is an existence of prufer domain of integral closure of $(\nabla[\mathcal{L}^4, \mathcal{L}^5])_{\nabla'}$.

Considering a maximal $t - ideal \nabla'$ of $\nabla[\mathcal{L}^4, \mathcal{L}^5]$ and let $\nabla' \cap \nabla[\mathcal{L}^4, \mathcal{L}^5] = \beta$. For nonempty β , $\nabla' = \beta[\mathcal{L}^4, \mathcal{L}^5]$. Additionally, since \mathcal{L}^4 doesn't belongs to $\beta[\mathcal{L}^4, \mathcal{L}^5]$ we have $\nabla[\mathcal{L}^4, \mathcal{L}^5]_{\nabla'} = \nabla[\mathcal{L}]_{\beta[\mathcal{L}]}$.

Thus we have a Prufer domain which is the integral closure of $\nabla[\mathcal{L}^4,\mathcal{L}^5]_{\nabla'}$. For zero β , then $\nabla[\mathcal{L}^4,\mathcal{L}^5]_{\nabla'}=\nabla''[\mathcal{L}^4,\mathcal{L}^5]_{\nabla'\nabla''[\mathcal{L}^4,\mathcal{L}^5]}$, which shows that $\nabla[\mathcal{L}^4,\mathcal{L}^5]_{\nabla'}$ is uni-dimensional Noetherian domain which results that we have Dedekind domain which is nothing but the integral closure of $\nabla[\mathcal{L}^4,\mathcal{L}^5]_{\nabla'}$ and hence Prufer domain.

References

- [1] E. Houston and M. Zafrullah, On t-invertibility II, Comm. Algebra 17(8) (1989), 1955-1969
- [2] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972
- [3] D.D. Anderson, D.F. Anderson, and M. Zafrullah, Rings between D[X] and K[X], Houston J. Math. 17 (1991), 109-129

Vol. 6 Issue 7, November 2017,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell's Directories of Publishing Opportunities, U.S.A

- [4] D.F. Anderson, The class group and local class group of an integral domain, in Non-Noetherian Ring Theory, Math. Appl., Kluwer Acad. Publ., Dordrecht 520 (2000), 33-55.
- [5] G.W. Chang, On the Principal Ideal Theorem, Bull. Korean Math. Soc. 36 (1999), 655-660.
- [6] M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Priifer integral closure, Comm. Algebra 26(4) (1998), 1017-1039.
- [7] S. Gabelli, On divisorial ideals in polynomial rings over Mori domains, Comm. Algebra 15 (1987), 2349-2370
- [8] I. Kaplansky, Commutative Rings, revised edition, Univ. of Chicago Press, 1974.
- [9] T.Y. Lam, Lectures on Modules and Rings, Springer, New York, 1999.
- [10] M. Nagata, Local Rings, Interscience, New York, 1962.
- [11] M. Roitman, On polynomial extensions of Mori domains over countable fields, J. Pure and Appl. Algebra 64 (1990), 315-328.